| Write your name here | | | |--|-----------------|--------------------------| | Surname | Other nan | nes | | Pearson Edexcel International Advanced Level | Centre Number | Candidate Number | | Chemistry Advanced Unit 6: Chemistry Lal | | | | Thursday 25 January 2018 - Time: 1 hour 15 minutes | – Afternoon | Paper Reference WCH06/01 | | Candidates must have: Scient | ific calculator | Total Marks | # **Instructions** - Use **black** ink or **black** ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. # Information - The total mark for this paper is 50. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - A Periodic Table is printed on the back cover of this paper. # **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - Show all your working in calculations and include units where appropriate. Turn over ▶ P51941A ©2018 Pearson Education Ltd. 5/5/5/1/1/ # Answer ALL the questions. Write your answers in the spaces provided. A series of tests is carried out on a solid compound, X. X contains one cation and one anion. Complete the Inference column in the table. | | Test | Observation | Inference | | |-----|--|--|--|-------| | (a) | Record the appearance of X | Yellow crystalline
solid | | (1) | | (b) | Carry out a flame test on X | Yellow flame | | (1) | | (c) | Add a few cm ³ of dilute sulfuric acid to a small amount of solid X in a test tube. Shake the test tube gently | Solid X dissolves
and an orange
solution is formed | The orange solution contains the anion with the formula | (1) | | (d) | To the solution formed in (c), add a few drops of ethanol and warm the mixture carefully | Orange solution
turns green | | (2) | | (e) | To half of the green solution formed in (d), add aqueous sodium hydroxide, drop by drop, until | A green precipitate initially forms which dissolves in excess sodium hydroxide to form a green | The formula of the green precipitate is | . (2) | | | in excess | solution | The formula of the ion responsible for the colour of the green solution formed is | (2) | | | Test | Observation | Inference | |----|---|------------------------------|---| | f) | To the remaining half
of the green solution
formed in (d), add a
spatula measure of
zinc powder | Green solution
turns blue | The formula of the ion responsible for the colour of the blue solution formed is | | | | | The role of zinc in this reaction is | | | | | | | g) | Filter off the excess zinc from the mixture remaining after (f), collecting the filtrate in a test tube. | Blue solution turns
green | The formula of the ion responsible for the colour of the green solution is | | | Shake the test tube vigorously for a few minutes | | Type of reaction that has occurred is | | | | | | | | | | | (Total for Question 1 = 11 marks) **2** A series of tests is carried out on two organic compounds, **Y** and **Z**. Each molecule of **Y** and **Z** contains - three carbon atoms - one functional group. - (a) Complete the Inference column, taking the information above into account. You should state what **further** information the tests and observations give you about the original compound **Y**. | | Test | Observation | Inference about compound Y | | |-------|---|--|-----------------------------------|-----| | (i) | Add a small spatula measure of phosphorus(V) chloride to 1 cm ³ of Y in a test tube. Test any fumes given off with damp blue litmus paper | Steamy fumes
are given off
which turn
damp blue
litmus paper red | | (1) | | (ii) | Add 2 cm ³ of sodium carbonate solution to 1 cm ³ of Y in a test tube | No change | | (1) | | (iii) | Add 2 cm ³ of sodium hydroxide solution to 1 cm ³ of Y | A pale yellow solid with an antiseptic smell | | | | | in a test tube. Add iodine solution, drop by drop, until the iodine is just in excess | forms | | (1) | (iv) Use your inferences in (a)(i) to (iii), and the information from the beginning of the question, to identify compound \mathbf{Y} , by writing its name or formula. (1) | (v) | The mass spectrum of compound Y has a peak at $m/e = 45$. | |-----|--| | | Give the formula of the species responsible for this peak and explain how this | | | species is formed from a molecule of compound Y. | (2) Species responsible: How this species is formed from a molecule of compound Y: (b) Two tests are carried out on compound **Z**. Complete the table by filling in the Inference column. | | Test | Observation | Inference | | |------|---|---|---|-----| | (i) | Add a small spatula measure of phosphorus(V) chloride to 1 cm ³ of Z in a test tube. Test any fumes given off with damp blue litmus paper | Steamy fumes are
given off which turn
damp blue litmus
paper red | The steamy fumes are | (1) | | (ii) | Add 2 cm ³ of sodium carbonate solution to 1 cm ³ of Z in a test tube | Vigorous fizzing occurs | The functional group present in compound Z is | | | | Bubble any gas
formed through
limewater | The limewater turns
milky | | (1) | (iii) Use your inferences in (b)(i) and (b)(ii), and the information from the beginning of the question, to identify compound **Z**, by writing its name or formula. (1) (Total for Question 2 = 9 marks) 3 An experiment is carried out to investigate the kinetics of the reaction between iodine and propanone in the presence of hydrogen ions. The chemical equation for the reaction is $$CH_3COCH_3 + I_2 \rightarrow CH_3COCH_2I + H^+ + I^-$$ The rate equation for the reaction is rate = $$k \left[CH_3COCH_3 \right]^a \left[H^+ \right]^b \left[I_2 \right]^c$$ where *a*, *b* and *c* are the orders with respect to the species shown in the rate equation. It is known that *a*, the order with respect to propanone, is 1. ### **Procedure:** - Propanone, water and dilute hydrochloric acid are placed in a conical flask in a water bath - Once the temperature of the mixture has equilibrated, a solution of iodine in potassium iodide is added and a clock is started - At suitable time intervals, a known volume of the reaction mixture is transferred into a series of flasks numbered 1 to 6. Each flask contains excess aqueous sodium hydrogencarbonate solution which quenches the reaction - The contents of each flask are titrated with a solution of sodium thiosulfate of known concentration. $$I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^-$$ (a) The following data were obtained in an experiment carried out at 25 °C. | Flask number | 1 | 2 | 3 | 4 | 5 | 6 | |--|-------|-------|-------|------|------|------| | Time / min | 2 | 6 | 10 | 12 | 14 | 18 | | Volume of sodium thiosulfate / cm ³ | 18.80 | 14.40 | 10.40 | 8.20 | 6.00 | 2.00 | (i) Plot a graph of volume of sodium thiosulfate (*y*-axis) against time (*x*-axis). Label the axes. (4) (ii) The order with respect to iodine can be determined from the graph plotted in (a)(i). Explain why the actual concentration of iodine does **not** need to be calculated in this experiment. (1) (iii) In this experiment, the concentrations of both the propanone and the hydrochloric acid are chosen so as to be in large **excess**. Explain why this is necessary when determining *c*, the order with respect to iodine. (2) | (iv) Give the value of <i>c</i> , the order with respect to iodine. Justify your answer. | (2) | |--|-----| | | | | | | | (b) (i) State the indicator used in the iodine-thiosulfate titration. Describe the colour change that is observed at the end-point. | | | n disator | (2) | | ndicator tototo | | | (ii) The indicator named in (b)(i) should not be added at the start of the titration State when the indicator is added to the mixture in the conical flask and explain why it should not be added at the start. | | | (c) The titre obtained from the sample at 18 minutes has the greatest uncertainty. Explain why this is so. | (1) | | | | | (d) | In a similar experiment, the concentration of the hydrochloric acid was doubled whilst keeping all other variables the same. The gradient of the graph plotted with these data was double the gradient of the graph plotted in (a)(i). | | |-----|---|--------------| | | Deduce the value of b, the order with respect to hydrogen ions, and justify your ans | swer.
(2) | | | | | | | | | | (e) | Suggest an alternative practical technique which can be used to monitor the progress of the reaction. Justify your choice. | | | | $CH_3COCH_3 + I_2 \rightarrow CH_3COCH_2I + H^+ + I^-$ | (2) | | | | | | | | | | | | | (Total for Question 3 = 18 marks) (3) **4** The compound 2-ethanoylaminobenzoic acid, C₉H₉NO₃, is extremely reactive and is only prepared under strictly controlled conditions. The steps of the procedure to prepare this compound and determine its melting temperature are as follows: - Step **1** Transfer 3.70 g of 2-aminobenzoic acid, C₇H₇NO₂, to a dry 50 cm³ pear-shaped flask fitted with a reflux condenser - Step 2 Add 7.0 cm³ of ethanoyl chloride (an excess) by pouring it carefully down the reflux condenser - Step **3** Heat the contents of the pear-shaped flask slowly to boiling, and heat under reflux for 15 minutes - Step 4 Allow the mixture to cool and then add 5.0 cm³ of water - Step **5** Heat the solution slowly to boil it for a few minutes - Step 6 Allow the solution to cool slowly to room temperature - Step **7** Collect the crystals of 2-ethanoylaminobenzoic acid using suction filtration - Step 8 Recrystallise the 2-ethanoylaminobenzoic acid - Step **9** Determine the melting temperature of the pure dry crystals of 2-ethanoylaminobenzoic acid. - (a) Explain, in terms of changes of state, how the process of heating under reflux works and give **two** reasons why it is often necessary to heat chemicals under reflux as in Step **3**. | |
 | | |------|------|------| | | | | |
 |
 |
 | |
 |
 |
 | | | | | | | | | | (b) (i) Give the reason why water is added in Step 4 . | (1) | |--|---------------------| | (ii) Suggest why the reaction mixture was cooled before the water was added in | Step 4 . (1) | | (c) Suggest two advantages of using suction filtration in Step 7 compared to normal filtration. | (2) | | (d) Give two features of the results of the melting temperature determination in Step 9 that would confirm the crystals of 2-ethanoylaminobenzoic acid were pure | e.
(2) | | | | (e) In the balanced equation for this reaction, the mole ratio of 2-aminobenzoic acid, $C_7H_7NO_2$: 2-ethanoylaminobenzoic acid, $C_9H_9NO_3$, is 1:1. In an experiment, $3.70\,g$ of 2-aminobenzoic acid, $C_7H_7NO_2$, produced $2.42\,g$ of 2-ethanoylaminobenzoic acid, $C_9H_9NO_3$. Calculate the percentage yield of the product in this reaction. (3) (Total for Question 4 = 12 marks) **TOTAL FOR PAPER = 50 MARKS** 12 **BLANK PAGE** **BLANK PAGE** **BLANK PAGE** # The Periodic Table of Elements | 0 (8) | (18) | 4.0 | |-------|------|-----| | 7 | | | | 9 | | | | 2 | | | | 4 | | | | ო | | | | | | | | | | | | | | | | | Г | | | | , | 0.1 | 2 | | | | ~ | | | | | | _ | | | _ | | | | | | | _ | | | | _ | | | | _ | | | | |-------------|---------------|----------------------|---------------|----------------|----------------------------|------|----|------------------|------|----|--------------------|----|-------|----------|-----------------------|----|-------|--------------|-----------|----|-------|---|-----------------------------| | 4.0 | He helium | 20.2 | Ne | neon | 10 | 39.9 | Αľ | argon
18 | 83.8 | 궃 | krypton | 36 | 131.3 | Xe | xenon | 24 | [222] | 몺 | radon | 98 | | ted | | | | (17) | 19.0 | L | fluorine | 6 | 35.5 | ರ | chlorine
17 | 79.9 | Br | bromine | 35 | 126.9 | Ι | iodine | 53 | [210] | Αt | astatine | 85 | | een repor | | | | (16) | 16.0 | 0 | oxygen | × | 32.1 | S | sulfur
16 | 79.0 | Se | selenium | 34 | 127.6 | <u>e</u> | tellurium | 52 | [506] | 8 | polonium | 84 | | 116 have b | ticated | | | (15) | 14.0 | z | nitrogen | 1 | 31.0 | _ | phosphorus
15 | 74.9 | As | arsenic | 33 | 121.8 | Sb | antimony | 51 | 209.0 | B. | bismuth | 83 | | bers 112- | but not fully authenticated | | | (14) | 12.0 | U | carbon | 9 | 28.1 | Si | silicon p | 72.6 | ge | germanium | 32 | 118.7 | Sn | tị | 20 | 207.2 | P | lead | 82 | | Elements with atomic numbers 112-116 have been reported | but not 1. | | | (13) | 10.8 | В | boron | 2 | 27.0 | ¥ | aluminium
13 | 69.7 | Ga | gallium | 31 | 114.8 | Г | indium | 46 | 204.4 | F | thallium | 81 | | ents with | | | | | | | | | | | (12) | 65.4 | Zn | zinc | 30 | 112.4 | В | cadmium | 48 | 200.6 | Η̈́ | mercury | 80 | | Elen | | | | | | | | | | | (11) | 63.5 | J | copper | 29 | 107.9 | Ag | silver | 47 | 197.0 | Αn | plog | 79 | [272] | Rg | roentgenium
111 | | | | | | | | | | (10) | 58.7 | ï | nickel | 28 | 106.4 | Pq | palladium | 46 | 195.1 | చ | platinum | 78 | [271] | Os | darmstadtium
110 | | | | | | | | | | (6) | 58.9 | ဝ | cobalt | 27 | 102.9 | 묎 | モ | 45 | 192.2 | Ļ | iridium | 77 | [568] | Mt Ds Rg | meitnerium
109 | | 0: I | hydrogen
1 | | | | | | | (8) | 55.8 | Fe | iron | 26 | 101.1 | Ru | Ę | 44 | 190.2 | S | osmium | 76 | _ | | hassium
108 | | | | | | | | | | (2) | 54.9 | Wn | chromium manganese | 25 | [86] | 卢 | molybdenum technetium | 43 | 186.2 | Re | rhenium | 75 | _ | Bh | bohrium
107 | | | | mass | pol | mhor | ialiibei | | | (9) | 52.0 | ъ | | 24 | 62.6 | Wo | molybdenum | 42 | 183.8 | > | tungsten | 74 | [596] | Sg | seaborgium
106 | | | Kev | relative atomic mass | atomic symbol | name (noroton) | atoniic (protoni) iiuniber | | | (5) | 50.9 | > | vanadium | 23 | 92.9 | g | Έ | 41 | 180.9 | ъ | tantalum | 73 | _ | Pp
Dp | dubnium
105 | | | | relat | ato | otomic . | atollic | | | (4) | 47.9 | ï | titanium | 22 | 91.2 | Zr | zirconium | 40 | 178.5 | Ξ | ř | 72 | [261] | | rutherfordium
104 | | | | _ | | | | | | (3) | 45.0 | Sc | scandium | 21 | 88.9 | > | > | 39 | 138.9 | Ľa* | lanthanum | 57 | [227] | Ac* | actinium
89 | | | 0 | 9.0 | Be | beryllium | 4 | 24.3 | Wg | magnesium
12 | 40.1 | Ca | calcium | 20 | 97.6 | Sr | strontium | 38 | 137.3 | Ba | barinm | 26 | [526] | Ra | radium
88 | | | (1) | 6.9 | <u>:</u> | lithium | ~ | 23.0 | Na | sodium
11 | 39.1 | ¥ | potassium | 19 | 85.5 | ß | rubidium | 37 | 132.9 | ర | caesium | 22 | [223] | Ŀ | francium
87 | | | | | _ | | _ | _ | _ | | | _ | _ | _ | | | _ | _ | | _ | _ | _ | | _ | | ^{*} Lanthanide series ^{*} Actinide series | | _ | Ш | | | _ | nnic | | |-------|----|--------------|----|-------|----|--------------|-------| | 175 | Γn | _ | _ | [25] | ۲ | ľ | | | 173 | ΥР | ytterbium | 70 | [254] | å | _ | 102 | | 169 | H | thulium | 69 | [256] | ΡW | mendelevium | 101 | | 167 | ᆸ | erbium | 89 | [253] | | | 100 | | 165 | 우 | _ | | [254] | Es | einsteinium | 66 | | 163 | ò | dysprosium | 99 | [251] | უ | californium | 98 | | 159 | Δ | terbium | 9 | [245] | 쓢 | berkelium | 26 | | 157 | РS | gadolinium | 64 | [247] | Ë | anium | 96 | | 152 | Eu | europium | 63 | [243] | Am | americium | 95 | | 150 | Sm | samarium | 62 | [242] | Pu | plutonium | 94 | | [147] | Pm | promethium | 61 | [237] | å | neptunium | 93 | | 144 | PN | ፚ | | 238 | _ | uranium | 92 | | 141 | P | praseodymium | 26 | [231] | Pa | protactinium | 90 91 | | 140 | o | cerium | 58 | 232 | 卢 | thorium | 90 |